Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J R Soc Interface ; 20(208): 20230346, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37907091

RESUMO

Prior research on evolutionary mechanisms during the origin of life has mainly assumed the existence of populations of discrete entities with information encoded in genetic polymers. Recent theoretical advances in autocatalytic chemical ecology establish a broader evolutionary framework that allows for adaptive complexification prior to the emergence of bounded individuals or genetic encoding. This framework establishes the formal equivalence of cells, ecosystems and certain localized chemical reaction systems as autocatalytic chemical ecosystems (ACEs): food-driven (open) systems that can grow due to the action of autocatalytic cycles (ACs). When ACEs are organized in meta-ecosystems, whether they be populations of cells or sets of chemically similar environmental patches, evolution, defined as change in AC frequency over time, can occur. In cases where ACs are enriched because they enhance ACE persistence or dispersal ability, evolution is adaptive and can build complexity. In particular, adaptive evolution can explain the emergence of self-bounded units (e.g. protocells) and genetic inheritance mechanisms. Recognizing the continuity between ecological and evolutionary change through the lens of autocatalytic chemical ecology suggests that the origin of life should be seen as a general and predictable outcome of driven chemical ecosystems rather than a phenomenon requiring specific, rare conditions.


Assuntos
Células Artificiais , Origem da Vida , Humanos , Ecossistema , Catálise
2.
Elife ; 112022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35916365

RESUMO

Directed microbial evolution harnesses evolutionary processes in the laboratory to construct microorganisms with enhanced or novel functional traits. Attempting to direct evolutionary processes for applied goals is fundamental to evolutionary computation, which harnesses the principles of Darwinian evolution as a general-purpose search engine for solutions to challenging computational problems. Despite their overlapping approaches, artificial selection methods from evolutionary computing are not commonly applied to living systems in the laboratory. In this work, we ask whether parent selection algorithms-procedures for choosing promising progenitors-from evolutionary computation might be useful for directing the evolution of microbial populations when selecting for multiple functional traits. To do so, we introduce an agent-based model of directed microbial evolution, which we used to evaluate how well three selection algorithms from evolutionary computing (tournament selection, lexicase selection, and non-dominated elite selection) performed relative to methods commonly used in the laboratory (elite and top 10% selection). We found that multiobjective selection techniques from evolutionary computing (lexicase and non-dominated elite) generally outperformed the commonly used directed evolution approaches when selecting for multiple traits of interest. Our results motivate ongoing work transferring these multiobjective selection procedures into the laboratory and a continued evaluation of more sophisticated artificial selection methods.


Humans have long known how to co-opt evolutionary processes for their own benefit. Carefully choosing which individuals to breed so that beneficial traits would take hold, they have domesticated dogs, wheat, cows and many other species to fulfil their needs. Biologists have recently refined these 'artificial selection' approaches to focus on microorganisms. The hope is to obtain microbes equipped with desirable features, such as the ability to degrade plastic or to produce valuable molecules. However, existing ways of using artificial selection on microbes are limited and sometimes not effective. Computer scientists have also harnessed evolutionary principles for their own purposes, developing highly effective artificial selection protocols that are used to find solutions to challenging computational problems. Yet because of limited communication between the two fields, sophisticated selection protocols honed over decades in evolutionary computing have yet to be evaluated for use in biological populations. In their work, Lalejini et al. compared popular artificial selection protocols developed for either evolutionary computing or work with microorganisms. Two computing selection methods showed promise for improving directed evolution in the laboratory. Crucially, these selection protocols differed from conventionally used methods by selecting for both diversity and performance, rather than performance alone. These promising approaches are now being tested in the laboratory, with potentially far-reaching benefits for medical, biotech, and agricultural applications. While evolutionary computing owes its origins to our understanding of biological processes, it has much to offer in return to help us harness those same mechanisms. The results by Lalejini et al. help to bridge the gap between computational and biological communities who could both benefit from increased collaboration.


Assuntos
Algoritmos , Evolução Biológica , Fenótipo , Ferramenta de Busca
3.
PLoS One ; 16(7): e0241734, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34310599

RESUMO

Personal protective equipment (PPE) is crucially important to the safety of both patients and medical personnel, particularly in the event of an infectious pandemic. As the incidence of Coronavirus Disease 2019 (COVID-19) increases exponentially in the United States and many parts of the world, healthcare provider demand for these necessities is currently outpacing supply. In the midst of the current pandemic, there has been a concerted effort to identify viable ways to conserve PPE, including decontamination after use. In this study, we outline a procedure by which PPE may be decontaminated using ultraviolet (UV) radiation in biosafety cabinets (BSCs), a common element of many academic, public health, and hospital laboratories. According to the literature, effective decontamination of N95 respirator masks or surgical masks requires UV-C doses of greater than 1 Jcm-2, which was achieved after 4.3 hours per side when placing the N95 at the bottom of the BSCs tested in this study. We then demonstrated complete inactivation of the human coronavirus NL63 on N95 mask material after 15 minutes of UV-C exposure at 61 cm (232 µWcm-2). Our results provide support to healthcare organizations looking for methods to extend their reserves of PPE.


Assuntos
COVID-19/prevenção & controle , Contenção de Riscos Biológicos/métodos , Descontaminação/métodos , Pandemias , SARS-CoV-2/efeitos da radiação , Raios Ultravioleta , COVID-19/transmissão , COVID-19/virologia , Relação Dose-Resposta à Radiação , Reutilização de Equipamento , Pessoal de Saúde/educação , Humanos , Laboratórios/organização & administração , Máscaras/virologia , Respiradores N95/virologia , Radiometria/estatística & dados numéricos , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia
4.
Am J Infect Control ; 49(4): 424-429, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33186675

RESUMO

BACKGROUND: Filtering facepiece respirators (FFR) are critical for protecting essential personnel and limiting the spread of disease. Due to the current COVID-19 pandemic, FFR supplies are dwindling in many health systems, necessitating re-use of potentially contaminated FFR. Multiple decontamination solutions have been developed to meet this pressing need, including systems designed for bulk decontamination of FFR using vaporous hydrogen peroxide or ultraviolet-C (UV-C) radiation. However, the large scale on which these devices operate may not be logistically practical for small or rural health care settings or for ad hoc use at points-of-care. METHODS: Here, we present the Synchronous UV Decontamination System, a novel device for rapidly deployable, point-of-care decontamination using UV-C germicidal irradiation. We designed a compact, easy-to-use device capable of delivering over 2 J cm2 of UV-C radiation in one minute. RESULTS: We experimentally tested Synchronous UV Decontamination System' microbicidal capacity and found that it eliminates near all virus from the surface of tested FFRs, with less efficacy against pathogens embedded in the inner layers of the masks. CONCLUSIONS: This short decontamination time should enable care-providers to incorporate decontamination of FFR into a normal donning and doffing routine following patient encounters.


Assuntos
COVID-19/prevenção & controle , Descontaminação/instrumentação , Sistemas Automatizados de Assistência Junto ao Leito , Dispositivos de Proteção Respiratória/virologia , SARS-CoV-2 , Raios Ultravioleta , COVID-19/virologia , Descontaminação/métodos , Reutilização de Equipamento , Humanos
5.
Artif Life ; 26(1): 58-79, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32027535

RESUMO

Fine-scale evolutionary dynamics can be challenging to tease out when focused on the broad brush strokes of whole populations over long time spans. We propose a suite of diagnostic analysis techniques that operate on lineages and phylogenies in digital evolution experiments, with the aim of improving our capacity to quantitatively explore the nuances of evolutionary histories in digital evolution experiments. We present three types of lineage measurements: lineage length, mutation accumulation, and phenotypic volatility. Additionally, we suggest the adoption of four phylogeny measurements from biology: phylogenetic richness, phylogenetic divergence, phylogenetic regularity, and depth of the most-recent common ancestor. In addition to quantitative metrics, we also discuss several existing data visualizations that are useful for understanding lineages and phylogenies: state sequence visualizations, fitness landscape overlays, phylogenetic trees, and Muller plots. We examine the behavior of these metrics (with the aid of data visualizations) in two well-studied computational contexts: (1) a set of two-dimensional, real-valued optimization problems under a range of mutation rates and selection strengths, and (2) a set of qualitatively different environments in the Avida digital evolution platform. These results confirm our intuition about how these metrics respond to various evolutionary conditions and indicate their broad value.


Assuntos
Biodiversidade , Evolução Biológica , Biologia Computacional , Vida , Filogenia , Simulação por Computador , Meio Ambiente , Evolução Molecular , Mutação , Seleção Genética
6.
Artif Life ; 25(1): 50-73, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30933626

RESUMO

Building more open-ended evolutionary systems can simultaneously advance our understanding of biology, artificial life, and evolutionary computation. In order to do so, however, we need a way to determine when we are moving closer to this goal. We propose a set of metrics that allow us to measure a system's ability to produce commonly-agreed-upon hallmarks of open-ended evolution: change potential, novelty potential, complexity potential, and ecological potential. Our goal is to make these metrics easy to incorporate into a system, and comparable across systems so that we can make coherent progress as a field. To this end, we provide detailed algorithms (including C++ implementations) for these metrics that should be easy to incorporate into existing artificial life systems. Furthermore, we expect this toolbox to continue to grow as researchers implement these metrics in new languages and as the community reaches consensus about additional hallmarks of open-ended evolution. For example, we would welcome a measurement of a system's potential to produce major transitions in individuality. To confirm that our metrics accurately measure the hallmarks we are interested in, we test them on two very different experimental systems: NK landscapes and the Avida digital evolution platform. We find that our observed results are consistent with our prior knowledge about these systems, suggesting that our proposed metrics are effective and should generalize to other systems.


Assuntos
Algoritmos , Modelos Biológicos , Biologia Sintética , Evolução Biológica
7.
Artif Life ; 22(3): 408-23, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27472417

RESUMO

We describe the content and outcomes of the First Workshop on Open-Ended Evolution: Recent Progress and Future Milestones (OEE1), held during the ECAL 2015 conference at the University of York, UK, in July 2015. We briefly summarize the content of the workshop's talks, and identify the main themes that emerged from the open discussions. Two important conclusions from the discussions are: (1) the idea of pluralism about OEE-it seems clear that there is more than one interesting and important kind of OEE; and (2) the importance of distinguishing observable behavioral hallmarks of systems undergoing OEE from hypothesized underlying mechanisms that explain why a system exhibits those hallmarks. We summarize the different hallmarks and mechanisms discussed during the workshop, and list the specific systems that were highlighted with respect to particular hallmarks and mechanisms. We conclude by identifying some of the most important open research questions about OEE that are apparent in light of the discussions. The York workshop provides a foundation for a follow-up OEE2 workshop taking place at the ALIFE XV conference in Cancún, Mexico, in July 2016. Additional materials from the York workshop, including talk abstracts, presentation slides, and videos of each talk, are available at http://alife.org/ws/oee1 .


Assuntos
Evolução Biológica , Biologia Sintética , Congressos como Assunto , México
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...